J-Class Sequences of Linear Operators
نویسندگان
چکیده
منابع مشابه
Subspace-diskcyclic sequences of linear operators
A sequence ${T_n}_{n=1}^{infty}$ of bounded linear operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...
متن کاملJ-class Operators and Hypercyclicity
The purpose of the present work is to treat a new notion related to linear dynamics, which can be viewed as a “localization” of the notion of hypercyclicity. In particular, let T be a bounded linear operator acting on a Banach space X and let x be a non-zero vector in X such that for every open neighborhood U ⊂ X of x and every non-empty open set V ⊂ X there exists a positive integer n such tha...
متن کاملAbout a class of linear positive operators
In this paper we construct a class of linear positive operators (Lm)m≥1 with the help of some nodes. We study the convergence and we demonstrate the Voronovskaja-type theorem for them. By particularization, we obtain some known operators. 2000 Mathematics Subject Classification: 41A10, 41A25, 41A35, 41A36.
متن کاملA class of J-quasipolar rings
In this paper, we introduce a class of $J$-quasipolar rings. Let $R$ be a ring with identity. An element $a$ of a ring $R$ is called {it weakly $J$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $J(R)$ and the ring $R$ is called {it weakly $J$-quasipolar} if every element of $R$ is weakly $J$-quasipolar. We give many characterizations and investiga...
متن کاملJ -self-adjointness of a Class of Dirac-type Operators
In this note we prove that the maximally defined operator associated with the Dirac-type differential expression M(Q) = i ( d dx Im −Q −Q − d dx Im ) , where Q represents a symmetric m × m matrix (i.e., Q(x) = Q(x) a.e.) with entries in L loc (R), is J -self-adjoint, where J is the antilinear conjugation defined by J = σ1C, σ1 = ( 0 Im Im 0 ) and C(a1, . . . , am, b1, . . . , bm) = (a1, . . . ,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Analysis and Operator Theory
سال: 2017
ISSN: 1661-8254,1661-8262
DOI: 10.1007/s11785-017-0658-4